¢

LAWRENCE
LIVERM ORE
NATIONAL
LABORATORY

LLNL-TR-638557

Compiling MPI for Many-Core
Systems

G. Bronevetsky, A. Friedley, T. Hoefler, A.
Lumsdaine, D. Quinlan

June 6, 2013

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Compiling MPI for Many-Core Systems

Abstract

Processors with multiple (or many) cores and shared
memory are becoming ubiquitous across the com-
puting spectrum. MPI, the current de facto program-
ming model for scalable parallel applications, enforces
copies between source and target processes and thus
can not fully utilize shared memory and cache archi-
tectures of modern machines. To enable MPI-based
programs to more fully exploit features of multi- and
many-core architectures, we present a compiler-based
transformation that transforms MPI processes into
threads and fuses message serialization and deserial-
ization loops such that send and receive calls can be
replaced by direct memory accesses. Our compiler re-
places most of the MPI communication functions with
direct load/store accesses and our runtime provides a
threaded MPI implementation to handle the remain-
ing functions. We show the utility of our transforma-
tion with two applications, a molecular dynamics code,
MiniMD, and a two-dimensional parallel fast Fourier
transform (FFT). Our benchmarks show that our loop
fusion techniques reduce communication times up to
43% for MiniMD and up to 59% for the FFT on mod-
ern multi-core systems. Our techniques will enable the
automatic transformation of existing MPI codes to take
advantage of modern shared memory architectures. In
the future, this approach will aid in the transformation
of MPI codes to a hybrid communication model that
achieves high performance on a wide range of systems
ranging from individual nodes to very large clusters of
many-core nodes.

1. Introduction

The Message Passing Interface (MPI) is the de facto
programming model for High Performance Computing
(HPC), providing developers with a portable commu-
nication API that allows them to precisely direct an ap-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PPoPP ’12
Copyright © 2012 ACM [to be supplied]. .. $10.00

plication’s inter-process communication and synchro-
nization. However, MPI was motivated by and opti-
mized for a system model of distributed memory hard-
ware running processes with separate address spaces.
With the rise of multi- and many-core computing, an in-
creasing fraction of cores are connected via high-speed
shared cache and main memory. While MPI implemen-
tations have been written to take advantage of such
hardware [6], MPI’s distributed memory heritage has
resulted in semantics that inherently limit the perfor-
mance of these solutions relative to native shared mem-
ory programming models such as OpenMP [20].

The requirements of MPI semantics can be seen in a
point-to-point message between a sender and receiver
where MPI requires that (1) the sender’s data structure
be serialized into a buffer or represented as a (serial-
izable) MPI datatype, (2) each point-to-point message
be matched to a receive operation on the receiver, and
(3) the message be transferred into a serial buffer or a
memory region represented as an MPI datatype. While
this decoupling of sender and receiver is appropriate for
distributed memory systems, it is inefficient on shared
memory hardware, which allows the sender’s data to
be directly transferred to the receiver (or directly ac-
cessed by the receiver). On the other hand, the com-
municating sequential processes (CSP) model under-
lying MPI is a powerful means of organizing parallel
codes and for expressing parallelism. Further, because
MPTI’s distributed memory model requires developers
to explicitly specify data transfers, it is more natural to
write applications with good locality, which is critical
for achieving high performance on modern hierarchical
memory systems and networks. MPI’s clear specifica-
tion makes it possible to develop compiler analyses and
optimizations to improve communication performance.
With the use of such analyses, MPI codes can maintain
the expressive power of the CSP model without the lim-
itations of MPI’s message-passing semantics.

In this paper, we present a novel optimization of
MPI communication on shared memory hardware that
replaces MPI calls with direct load/store transfers from
sender to receiver data structures. It consists of a com-
piler transformation and a runtime support library. Our
runtime library assigns ranks to individual threads and

combines all ranks on each node into a single process,
enabling faster communication through a shared ad-
dress space. Our compiler analysis examines the code
used to serialize and deserialize application data struc-
tures into a communication buffer. It leverages the rel-
atively simple access patterns used for communica-
tion buffers to detect if the loops transfer data from
the sender’s to the receiver’s data structures, eliminat-
ing the MPI calls and the associated communication
buffers. The code to access the sender’s and receiver’s
data structures is left as it is, allowing the analysis
to support arbitrary application data structures. While
such transformations are equally applicable to code that
explicitly serializes and deserializes communication
buffers and code that uses MPI datatypes, this paper
focuses on the former because it represents a more gen-
eral compiler analysis challenge (MPI datatypes have
clear semantics) and because explicit serialization has
a higher cost than an optimized MPI datatype imple-
mentation.

Our experimental results show that loop fusion is
highly effective at improving communication perfor-
mance in existing MPI applications. It reduces the
communication time in the MiniMD molecular dynam-
ics program by 43% and 42% when executed 16-core
Opteron 8356 and 12-core Intel Xeon X5660 nodes,
respectively. The optimization reduces communication
time in a 2-dimensional FFT application by 52% and
59% on the same platforms.

This paper is organized as follows. Section 2 sur-
veys related work. Section 3 describes the design of
our compiler analysis and transformation. Section 3.3
discusses how transforms code on one rank to be exe-
cuted by other ranks. We then describe in Section 3.4.1
a simple transformation to fuse code that serializes and
deserializes buffers based on only the control-flow in-
formation. This transformation is then refined in Sec-
tion 3.4.3 to consider and preserve dataflow ordering
between expressions in the two code regions, ensur-
ing that the semantics of the original application are
preserved. Section 4 then discusses the runtime com-
ponents of our approach, including implementing MPI
ranks using threads and how our transformation can
be applied to collective operations that span multiple
nodes. Section 5 shows the improvements in applica-
tion performance due to the fusion transformation.

2. Related Work

There has been prior compiler work on detecting a vari-
ety communication patterns. One example is alignment
of barriers for APIs where barriers may be either tex-
tually aligned [14] or unaligned [11] [26]. Another ex-
ample is Shao et al [22], which supports more complex
patterns but can only match sends to receives at run-
time, when the number of processes is known.

MPI-CFGs [23] are an extension of standard control-
flow graphs (CFGs), with additional edges between
MPI_Send and MPI _Recv operations. The analysis con-
nects all MPI_Sends to all MPT Recvs and then uses
sequential information such as mismatched tags or
datatypes to prune edges that cannot represent real
matches. Bronevetsky [5] describes a more general
analysis that represents all the possible behaviors of a
parallel application using a parallel control-flow graph
and extends traditional dataflow analyses over this
graph. Further, Danalis et al. have worked on com-
piler techniques to improve the performance of MPI
applications, focusing on improving communication/-
computation overlap via sequential tiling [1] and code
motion [7].

Finally, there has been extensive work on runtime
mechanisms for enabling MPI ranks executing on the
same node to communicate to each other using shared
memory. This include work on both kernel-level exten-
sions [4, 13, 17] as well as MPI implementations that
use threads as ranks such as TMPI [25] and Tern [12].

To our knowledge this paper is the first optimization
for message passing applications that fuses code from
multiple processes.

3. Compiler Analysis and Transformation
3.1 Approach

Our compiler analysis operates on application code
that explicitly serializes data into, and deserializes data
from, a serial representation. The analysis detects seri-
alization and deserialization by MPI ranks executing on
the same node and fuses those operations into a single
loop that directly transfers data from sender to receiver
without the use of intermediate buffers. This optimiza-
tion can significantly improve performance in the case
where both ranks execute on the same node and also in
cases where the interconnection network supports effi-
cient fine-grained remote memory access [2].

Figure 1 shows a motivating example for our trans-
formation, extracted from the MiniMD benchmark

(part of the Mantevo suite [16] and described in more
detail in Section 5.1). In the original code, a sender
rank serializes an array of local atom records into
buffer sbuf and uses MPI point-to-point communica-
tion to copy it to buffer rbuf on the receiver rank. This
buffer is then deserialized into the receiver’s atom data
structure writing the incoming entries after the existing
ones.

Sender Rank

Receiver Rank

// Serialize loop
for(int i=0; i<n; i++) {
sbuf[i*2] = atom[i].x;

. - H .
sbuffi*2+1] = atom[il.y; ;?eceive rbuf from sender

»”| |// Deserialize loop

int startldx = numAtoms;

for(int i=0, j=0; i<bufLen; i++) {
atom(startldx+j].x = rbuf[j++];
atom([startldx+j].y = rbuf[j++];

}

Send sbuf to receivers

numAtoms++;
}
Transformed
Sender Rank/Thread Receiver Rank/Thread
Signal,
& —

Transfer &atom, n Wait, Load Ratom, Rn

// Fused serialize/deserialize loop
int startldx = numAtoms;

for(int i=0; j<Rn; i++) {
atom(startldx+i].x = Ratom[i]->x;
atom(startldx+i].y = Ratom[i]->y;
numAtoms++;

Wait /

'ﬁ Synchronization == === -> Data Transfer

Figure 1: Example of fusion serialize/deserialize code.

Since both loops iterate over the same sequence of
buffer indices, the write to sbuf [k] by the sender cor-
responds to the read from rbuf [k] by the receiver.
As such, the right-hand-side of the write to sbuf [k]
produces the value that is ultimately copied to the left-
hand-side of the read from rbuf [k]. Our transforma-
tion thus aligns the iterations of both loops to directly
copy the data with no intermediate buffering. This is
shown in the Transformed code in Figure 1, where the
serialize and deserialize loops have been fused to so
that the receiver executes the entire data transfer in one

pass. The new code also includes additional synchro-
nization to ensure the data is delivered from the sender
as well as transfers of the variables and pointers used
in the sender’s code to make them accessible by the re-
ceiver. It also valid for the fused loop to be executed by
the sender.

The resulting code uses the original specification of
parallelism from the MPI code but implements it in a
way that is inherently suited to shared memory hard-
ware. We use the above code sample from MiniMD as
the running example through this paper.

3.2 Outline of Transformations

“Serialization code” is the code region that writes data
into a buffer passed to a send operation (e.g. MPI_Send,
MPI _Isend). “Deserialization code” is the code region
that reads data from the receive operation (MPI_Recv,
MPI_Irecv) that matches the send operation. Our work
focuses on the common case where the serialization
and deserialization loops iterate over the communica-
tion buffer in the same monotonic order. If the amount
of data sent is computed during the serialization code,
we assume that it is also sent in another message. Our
algorithm for fusing serialize and deserialize code op-
erates in two steps. First, the loop on one rank in the
exchanged is transformed so that it can execute on the
other rank. This produces a single code region, exe-
cuted by one of the ranks, that includes both loops and
can be analyzed as a unit. Second, the control flow
graphs of the loops are fused into a single graph that
executes the statements of both loops in an order guar-
anteed not to violate the application’s original data flow
dependencies.

The transformation that enables code on one MPI
rank to be executed by other ranks on the same node is
described in Section 3.3. It works by sending the ini-
tial values of live variables (those used in the migrated
code) from the source rank to the destination rank, run-
ning the migrated code using these local copies of the
variables and finally sending the result of the computa-
tion back from the destination rank to the source rank.
Since the pointers used by the migrated code still refer
to the same data structures in shared memory, it has ex-
actly the same effect on these data structures regardless
of which rank it is actually executed in.

The code fusion transformation is described in Sec-
tions 3.4. It takes the serialization and deserialization
loops that are now both executed on either the sender

or the receiver rank and fuses them into a single piece
of code that transfers data from the sender’s data struc-
tures to the receiver’s. This transformation analyzes the
linear expressions used by both code regions to index
the send and receive buffers. It then moves expressions
from the deserialization loop inside the serialization
loop, while ensuring that each serialized value is con-
sumed by the deserialization code after it is produced
by the serialization code.

Finally, Section 3.5 describes a few key normaliza-
tion steps that support our analysis such as connecting
matching sends and receives and identifying the serial-
ization and deserialization loops themselves.

3.3 Rank Motion of Code

This transformation step ensures that both the serialize
and deserialize code is executed on the same rank. It re-
duces the complexity of the compiler analysis because
the code region becomes purely sequential. It takes
code that is originally executed by rank origR and ad-
justs it so that it is executed by rank newR. The transfor-
mation uses liveness analysis [18] to identify the vari-
ables used in the migrated region and those modified
by the region and used afterwards. It then transforms
the application to utilize local copies of these used and
modified variables. Finally, it adds additional commu-
nication to send the initial values of the variables used
in the region from origR to newR before the migrated
code executes and to send the variables modified in the
region back when it finishes.

Figure 2 shows an example of this transformation,
applied to the deserialization code from Figure 1. Here
variables numAtoms and the pointer to atom are used
and sum and numAtoms are modified. If MPI ranks on
the same node are executed in a single process (runtime
support for this is described in Section 4.1), they have
direct access to each other’s data structures. As a result,
since our inserted communication transfers the initial
value of numAtoms and a pointer to atom, the loop on
rank newR is able correctly update the state of origR.

In general, only local variables that are used or mod-
ified in the migrated code region need to be explicitly
transferred across ranks. There is no need to explicitly
transfer heap memory because it is stored in shared
memory and thus available to all threads from their
existing pointers. The same is true for each thread’s
global variables because they must be stored in a heap-
allocated table. Thus, by transferring local variables

and accessing global variables through the table, the
migrated code maintains the illusion that it is executing
on rank origR. Note that although the migrated code
also uses variables rbuf and buflLen, these are not
transferred because they correspond to the original MPI
communication and are therefore available at origR.
This transformation can be applied to migrate the
deserialize code from the receiver to the sender rank
or to migrate the serialize code from the sender to the
receiver rank. Normally, reading is faster than writing,
so when both the sender and receiver side perform the
same number of memory accesses for serialization and
deserialization, migrating serialization code to the re-
ceiver is preferred. However, the sender’s serialization
loop may have additional memory accesses (e.g., us-
ing a secondary array to look up array indices in the
primary data structure), in which case moving the de-
serialization code to the sender will be preferred.

Original Transformed
Rank origR Rank newR Rank origR
int startldx = numAtoms; Wait, ?—'Signal,

for(int i=0, j=0; i<bufLen;
i++) {
atom([startldx+j].x =

atom([startldx+jl.y =

rbuf[j++];

Load RnumAtoms, Ratom
int startldx = RnumAtoms;
for(int i=0, j=0; i<bufLen;
i++) {
Ratom[startldx+j].x =

Transfer
numAtoms,
&atom

rbuf[j++];

buf[j++];
numAtoms++; ruffj++]

Ratom([startldx+j].y =
}) . rbuf[j++];
Print sum; RnumAtoms++;

}

Signal, > Wait,

Transfer sum, RnumAtoms Load sum,
numAtoms

Print sum;

Figure 2: Example of code migrated across ranks.

3.4 Fusion of Serialize and Deserialize Code

After the above transformation both the serialization
and deserialization code are executed by a single rank
(either sender or receiver). The next compiler transfor-
mation fuses the serialization and deserialization code
into a single loop, eliminating data transfer and serial-
ized data buffers. Assuming that both loops iterate over
the buffer in the same monotonic order, the transforma-
tion aligns the buffer writes and reads to directly trans-
fer data from the sender’s data structures into the re-
ceiver’s using the application’s own serialize logic but
without any buffering.

The first component of the transformation simplifies
the code. The code produced by Rank motion performs
three copies. First, the serialization loop writes data to

a communication buffer and may update a variable that
holds the buffer’s size. These variables come from the
code on the sender. This data is then copied from the
sender’s variables to the corresponding buffer and size
variable in the receiver’s code, after which the dese-
rialize loop is executed over these variables. The first
transformation thus fuses the communication buffers
and size variables into one, causing both loops to ac-
cess the same memory.

The second transformation interleaves the iteration
spaces of the two loops by managing dependencies be-
tween the writes of the serialize loop and the reads of
the deserialize loop. The key intuition is that it is le-
gal to move a given expression in the deserialization
loop before one in the serialization loop if this does
not change application semantics. For example, the size
of the buffer is checked during every iteration of the
deserialization loop to determine if it must exit. This
check can only be moved into locations within the se-
rialization loop (if any) where its outcome can never
be affected. This is trivial if the buffer size is known
at the start of the serialization loop but in many cases
(e.g., our MiniMD example) it is computed during the
loop. If this computation simply increases the size vari-
able monotonically (true in almost every case) it is le-
gal to move a check that the variable has reached a
given value up to the point in the code where this value
is first reached. For example, if the deserialize code
checks whether bufLen > i then it is legal to place
this check immediately after the expression in the seri-
alize loop that first sets bufLen to i or any larger value.
Dependencies between communication buffer accesses
are resolved similarly, where reads of buffer elements
in the deserialization can be moved up to their last def-
inition in the serialization loop.

A key challenge in this transformation is comput-
ing the mapping between iteration variables of the two
loops to infer the ordering relationship between their
expressions (e.g. mapping from expression i in Min-
iMD’s serialization loop to expression startIdx+j in
the deserialization loop). This can be done using any
symbolic abstraction of application state. In this paper
we focus on a linear abstraction, such as that used in
polyhedral models, because it provides a good balance
of simplicity and generality. As such we consider ex-
pressions such as buf [ax+b] or x < ay + b for any
integer constants a and b and variables x and y.

Figure 3 provides an example of how expressions
in sample executions of serialize and deserialize loops
can be reordered while preserving application seman-
tics. The serialize loop packs two elements into buf and
increments bufLen to 2. The deserialize loop unpacks
until its iterator variable i reaches bufLen. The loops
have been unrolled to clarify presentation. The example
shows that when i=0 it is possible to move the condi-
tional i<bufLen only upto the expression bufLen++
that sets bufLen to 1 since this preserves the condi-
tional’s original outcome of True. This in turn ensures
that the reads of buf [bufLen] in the deserialize code
are only executed after this buffer location has been as-
signed. While this illustration focuses on the applica-
tion’s dynamic execution, the sections below explain
how the compiler can perform the same type of reason-
ing symbolically.

Original Execution Reordered Execution

Serialize
bufLen=0 bufLen=0
_ <bufLen=0, i=0>-p
Eu;[Lbquen]—.-- buf[bufLen]=...
ufLen++
buf[bufLen]= <buflen-1, i=0>-pE i N
= if(i<bufLen) <true> « reorder
bufLen++ ... = buf[bufLen] .
Deserialize : conditionals
iy <buflen=1, i=1>p*+ upto
if(i<bufLen) <true> buf[bufLen]=... here
e = buf[bufLen] <buflen=2, i:1>‘>bquen++ <\>/ without
i++ if(i<bufLen) <true> < changing
if(ixbufLen) <true> ... = buf[bufLen] outcome
= buf[bufLen] <buflen=2, i:1>*>?+f
|:(+ butten) <6 if(i<bufLen) <false>
if(i<bufLen) <false>

Figure 3: Example of a legal code reordering.

The algorithm will be presented in three steps. First,
Section 3.4.1 presents a simple algorithm that fuses
multiple CFGs based on their control structure but
without taking the application’s dataflow into account.
Next, Section 3.4.2 summarizes symbolic dataflow
analyses. Finally, Section 3.4.3 combines the two con-
cepts into an integrated, dataflow-sensitive algorithm
for fusing serialize and deserialize code.

3.4.1 Fusion of Finite Automata

The simplest way to fuse two pieces of code is to repre-
sent them as finite automata, the behaviors of which are
defined by their control-flow graphs (CFGs). We then
fuse the CFGs by directly extending the well-known al-
gorithm for creating product finite automata [10]. Each
node of the fused CFG is a pair of CFG nodes, denoted
(serN,deserN), where serN is in the serialize CFG
and deser N is in the deserialize CFG. There is a valid

edge from one fused CFG node (ser N, deser N) to an-
other node (serN’ deserN') if there exists an edge
from serN to ser N’ or ser N = serN’, and the same
for deser N.

The algorithm starts with a work list that contains
CFG node (ser Ngiqrt, deser Ngyart), where ser Ngiart
and serNg,¢ are the starting nodes of the respective
CFGs. At each step it takes a graph node that corre-
sponds to some position in the two CFGs and iden-
tifies the states that can be reached if the application
makes a single transition in either CFG. Consider the
two loop CFGs shown in Figure 4, which are skeletons
of the MiniMD loops in Figure 1, containing a loop en-
try point, a body and an exit point. If the application is
atnode (A, () then either

¢ Loop 1 transitions from CFG node A to node B,
in which case the fused application transitions from
(A,5) 10 (B,),

e Loop 1 transitions from A to C, and the fused appli-
cation transitions to (C,), or

e Loop 2 transitions from [to «, and the fused appli-
cation transitions to (A, a).

The process is repeated using a standard worklist al-
gorithm until it generates all possible transitions in the
fused CFG. Each edge in this CFG is annotated with
the corresponding transition in the original CFGs. The
fused CFG is synthesized into source code by treating
it as a regular CFG where the edge annotations identify
operations and the paths between them specify control
flow.

Figure 4 shows these loops are fused. The fused loop
begins at the entry node (A|«). One possible transition
is for either loop to enter its body, leading to nodes
(A|B) and (B|a). From there, if the other loop enters
its body, the fused application reaches node (B|f),
where both loops are executing their bodies. The only
transitions from this node correspond to either loop
returning to its entry point. Another option is for either
loop to transition from its entry node (A or «) to the
loop’s exit node (C' or), in which case the fused CFG
transitions to the sub-graphs in the lower left and right
corners. Once there, the completed loop stalls at its
exit node until the other loop completes and the fused
application reaches its final node (C'|~).

Loop 1 Loop 2

e JCe (e

Fused Loop

Both Lo|ops Iterate

—y—

Al B B | a
B | B

55
2o Y T T
s BN

= = o
-~ ﬁg
oo
o o \ 20
o o ™
R p— w

Figure 4: Example of fused control-flow graphs

3.4.2 Symbolic Dataflow

This section summarizes the key ideas of symbolic
dataflow analysis, which will make it easier to under-
stand how these concepts are applied in our analysis.
Dataflow analysis is a fixed-point iteration over a
space of possible facts about each CFG node. The al-
gorithm starts with no information about each node
and iterates by accumulating all the assertions that
may be true about the application’s state at each node
until it reaches a fixed point where no additional as-
sertions can be discovered. The designer of a given
dataflow analysis must specify an abstraction that cap-
tures assertions about the application state (denoted
the “abstract state”). For example, an abstraction of
a constant-propagation analysis contains either each
variable’s known constant value if it is initialized or a
special symbol _L if it is not. Further, if the variable
may have more than one value the abstraction contains
special symbol T. More sophisticated abstractions rep-
resent application state using predicate or first-order
logic. The effect of expressions is modeled by a “trans-
fer” function that maps the abstract state before any
expression to the state after it. For example, if before
expression i++ it is known that i==var then afterwards
it is known that i-1==var. Control flow is captured via
a “meet” function that computes the union of abstract

states along multiple control paths. For example, if at
the end of one branch of a conditional it is known that
i==5 and after the other 1<10, the strongest fact known
immediately after the conditional is i < 10.

The dataflow algorithm monotonically increases the
set of possible facts known at each datafiow node until
it converges to the strongest set of facts that are true of
all possible executions.

Figure 5 presents an example of symbolic dataflow
analysis applied to the fused code from Figure 1. The
abstraction application state maintains the linear rela-
tionship between each pairs of variables. The key parts
of the CFG are shown in solid boxes and dashed boxes
denote the dataflow states computed between each pair
of nodes. Since these states evolve during the algo-
rithm’s execution, the CFG is shown twice and states
computed later in the algorithm are shown in the bot-
tom copy. Dashed arrows identify which states are used
to compute which other states.

We know that [i==0 A startIdx==numAtoms]
after the intial node A. When this state is propagated
through the loop’s iteration condition it is combined
with i > Rn along the loop’s exit edge or i < Rn
along the loop body edge. When the latter is propa-
gated through the body, it is updated from the state
[i==0 A startIdx==numAtoms A i<Rn] to [i==
A startIdx== numAtoms-1 A i<Rn-1] by the in-
crement operations. This state is propagated back to
the top of the loop, where it is unioned with the pre-
vious state at this CFG location. This symbolic union
is computed as follows. The union of i=0 and i=1
cannot be represented precisely as a single linear con-
straint and is conservatively approximated by i > 0.
No relationship is known between i and Rn before the
loop’s start so nothing further can be inferred about
their relationship. Finally, startIdx==numAtoms-1i is
true in both states, since i=0 in the initial state above
the loop. Thus, the resulting constraint is [1 > 0 A
startIdx==numAtoms-i].

This constraint is propagated again the CFG and it is
easy to confirm that no additional facts can be derived
from it. Therefore it is the fixed-point solution of the
dataflow equations. We can infer that at the end of
the loop [startIdx==numAtoms-i A i > Rn] and
thus numAtoms-startIdx > Rn. Further, we can use
the relationship between numAtoms and i to eliminate
i from the loop and use numAtoms as the only iteration
variable.

First Iteration of Dataflow

i=0;
[startldx = numAtoms;]

\ \\
\ i
’ i<Rn promeees S !
/ . i==0A i<Rn A i
B ! startldx == |
! J “namAtoms T i
,,,,,, Voo : , !
i==0 A | atom([startldx+i] = ...} |
‘ i2Rn A numAtoms++; | i
i startldx == . . ! !
numAtoms | I1++; ! !
””””””” ! T T |
\mm---m-m----¥------------- 1
2 | i==1 A i<Rn-1A .
End startldx == numAtoms-1 |

Second lteration of Dataflow
[startldx = numAtoms;] {
i=0;

K i<Rn o T R
/ o i<Rn A
I,’ > startldx ==
' : Atoms-i
,,,,,, a LHL,'T,,?T%,',
iRn A | atom([startldx+i] =!...;
j startldx == numAtoms++; |
 numAtoms; R]
************* ‘ I++; |
,,,,, m——
2 i<Rn-1 A startldx == numAtoms-i
End | = e
—> Control Flow ----> Dataflow State Updates

Figure 5: Example of symbolic dataflow analysis.

3.4.3 Symbolic Fusion of Serialize and Deserialize
Code

We now present the full algorithm to fuse serialize and
deserialize loops. The above CFG fusion transforma-
tion generates illegal execution paths because it only
considers control dependencies and ignores data de-
pendencies. We prevent it from generating dependence-
breaking paths by using a symbolic dataflow analy-
sis to resolve these dependencies. The intuition is that
unless otherwise known, the only safe way to gener-
ate the fused CFG is to first have it iterate over the
serialize loop and then the deserialize loop. Thus, as
the CFG fusion algorithm generates possible paths, it
will only transition along a node within the deserialize

loop’s CFG is if the dataflow analysis can prove that
this node’s expression only depends on actions that the
serialize loop has already performed. In other words,
when it considers the fused node (serN, deserN),
it generates an edge to (serN, deserNsuccessor) if
deserN is:

¢ A read access to an expression that is not changed
by the serialize loop.

¢ A conditional that checks whether a monotonically
increasing (or decreasing) variable is greater (or
smaller) than some variable or quantity that doesn’t
change during the loop and it can be proven that this
condition is satisfied at the current node in the seri-
alization loop. Since the variable is changing mono-
tonically, if such a condition is satisfied once, it will
be satisfied for the remainder of the application’s
execution.

¢ A read access to an entry of the communication
buffer and

* The order in which the communication buffer is
written is monotonic, and

= All expressions that write to the buffer must to
write either to earlier indexes (later, if monoton-
ically decreasing) or exactly the same index (en-
sures that the serialization loop has filled enough
of the buffer for this deserialization read to access
the correct value), and

= There is at least one write expression that targets
the same index as the read (these expressions will
be fused with the read expression).

Finally, if the fusion algorithm reaches a node where
the dataflow state is provably inconsistent (e.g. the
combination of conditionals around the node imply
False), the node and its successors are not included
in the fused CFG.

Once the fused CFG is generated, we fuse the read
and write expressions that are proven to always access
the same index of the communication buffer. For each
set of such matching reads and writes we generate a
temporary variable and replace buffer accesses with
equivalent accesses to this variable. This copy through
a register can be optimized into a direct copy by the
back-end compiler.

The analysis has two pre-conditions. First, loop it-
eration variables and index expressions in accesses to
the communication buffer must either increase or de-

crease monotonically. Second, there cannot be a path
from one write access to a given communication buffer
index and another write to potentially the same index
(i.e. each index must be written at most once). These
can be verified using a polyhedral analysis [3], com-
bined with a simple reachability analysis.

if (is Sender) {
// Serialize loop
int len=0;
for (int i=0; i<n; i++) {
if (atom[i] is in boundary) {
buf[len++] atom[i].x;
buf[len++] atom[i].y;
}
}

// Deserialize loop

int Rj = 0;

while (Rj<bufLen) {
Ratom [RnumAtoms] . x
Ratom [RnumAtoms] .y
RnumAtoms++;

buf[Rj++];
buf[Rj++];

Figure 6: Separate serialize/deserialize loops.

int len=0;
int j=0;
while (i<n) {
if (Atom[i] not on boundary) {
// Atom not on boundary, serialize loop
// iterates , deserialize loop does not

i++;

} else {
double TO = atom[i].x;
double T1 = atom[i].y
Ratom [RnumAtoms].x = TO;
Ratom [RnumAtoms].y = TI;
i++;
RnumAtoms++;

}

// Both loops terminate, transfer complete

Figure 7: Fused serialize/deserialize loop
Figure 6 shows the serialize and deserialize loops

of another loop from MiniMD, which is slightly more
complex than the example in Figure 1. The serialize
loop iterates over all the atoms at the sender and sends
out just the atoms on the border of its space, computing
the size of the buffer during the course of the loop.
The figure shows the two loops after the code motion
transformation and Figure 7 shows the results of fusing
these two loops. The variables from the receiver rank
have an R prepended to their names to clearly identify
each loop. The fused loop iterates over the sender’s
atoms and copies each border atom into the next slot in
the receiver’s atom array, starting with index numAtoms
and updating it after adding each new atom. Figure 8

Start

Initialization of Iterators Legend

Serialize | Deserialize
Condition | Condition
1 False True True False
w Serialize | Deserialize
i<n | Ri<Rbuflen Operation | Operation
Truel_ True Next|Op Next|Op
Assert(RbufLen = Ri<Rbuflen| | False
Rlen)
HTrue

X Serialize loop
terminates before
deserialize loop:

Rj < RbufLen A
RbufLen=len=Rj = False

Both Loops Terminate

atom[i] on Rj<RbufLen False
boundary
False
True True

Atom not on boundary,

le—

e . ? Deserialize loop terminates
serialize Joop iterates, before serialize loop
deserialize loop does not bufLen 2 len, from loop

C iterator analysis
Rj=len, from abstract state
Thus, unknown if Rj < RbufLen is

True or False
Thus, make no progress until known

Rj<RbufLen

. Both loops transferring data)

len=Rj20 False

Rj<RbufLen)

[TO < (sbufflen++] =

atoml[i].x) True|
TOCbuf[Ien-ll,l Rj=len-1 [
T1 < (sbufflen++] = "
! ~ | Rj<RbufLen
atomli].y) J

TO<buf[len-1], Rj=|en-ll: rbuf[Rj] matches TO

T1 < (sbuf[len++] = | (Ratom[RnumAtoms].x =
atomlil.y) rbuf[Rj++])&<TO
TO&buf[len-2], Tl<buf|[len-1], Rj=len-1 =
rbuf[Rj] matches T1
[i++

X Deserialize loop
terminates as
serialization begins

bufLen 2 len, from loop
iterator analysis

Rj=len-1, from abstract state

Thus, Rj 2 RbufLen = False

(Ratom[RnumAtoms].y =
rbuf[Rj++])<T1

i++ | PnumAtoms++

Figure 8: Example of fused serialize/deserialize loop

shows the fused loop’s CFG, along with the dataflow
state at each node.

The legend explains how each node’s successors
are displayed. For a given node (serN, deserN),
if neither serN or deserN are conditionals the suc-
cessor node corresponds to execution of either serN
or deserN. Otherwise, the Figure shows the succes-
sors that correspond to the conditional’s true and false
outcomes (edges are marked “True” and “False”, re-
spectively). At key edges of the graph we show linear
relationships inferred by the symbolic analysis.

The region labeled A corresponds the serialize and
deserialize loops initializing their variables. Control
then proceeds to node (i<n, Rj<RbufLen), which
corresponds to the top of both loops. Because at this
point in the code the serialize loop’s condition i<n has
not been resolved, the outcome of Rj<RbufLen is also
unknown, meaning that the fusion algorithm can only
make progress on the serialize loop. If the conditions
i<n is “atom[i] is on the boundary” evaluate as true
control enters region B, where the algorithm can safely
make progress in the deserialize loop without violating
dependencies. After this region of the fused CFG is
computed it is possible to show that the write and
read expressions marked with TO always access the
same index of the communication buffer because len
at the write is equal to Rj at the read. The same is
true of the expressions marked with T1. These pairs
of expressions will be fused and their data transferred
through temporary variables TO and T1 in the generated
code shown in Figure 7. Note that the algorithm doesn’t
generate a path for the case where these conditions
hold but the deserialize loop exits because this would
imply an impossibility, that j > bufLen when it is
also known that j < bufLen.

If the condition i < nevaluates to true but “atom[i]
is on the boundary” does not, this leads to region C. The
only legal path from this region returns to the fused
node at the top of both loops.

Finally, if condition i < n evaluates to false, this
leads to region D. The algorithm does not generate a
path condition Rj<RbufLen evaluates to True because
this is inconsistent with the fact that j==bufLen at the
end of the serialize loop. As such, the only legal path
is to the state where both the serialize and deserialize
loops have exited.

3.5 Supporting Normalization Steps

Our analysis needs to know which send and receive
operations in the source code must always match and
how message data is serialized and deserialized.

A “send operation” (MPI_Send, MPI_Isend, etc.)
matches a “receive operation” (MPI_Recv or MPI_Irecv)
in the source code if in all possible executions the
data in the send buffer will be communicated to the
receive buffer. Non-blocking sends are considered
to have occurred at the source code location of the
MPI _Isend. Non-blocking receives are considered to
have occurred at the source code location of its corre-

sponding MPI Wait or successful MPI_Test. The dis-
covery of such information is orthogonal to this paper
and has been addressed in prior work [5]. As such for
the purposes of this analysis we assume that it is pro-
vided by such an analysis or via source-code annota-
tions. Further, collective operations are interpreted as
the equivalent set of sends and/or receives that would
perform the same operation (e.g., MPI_Bcast on the
root rank is a send, and on all other ranks is a receive).

To identify the application code that serializes and
deserializes communication buffers our analysis needs
to know the locations in the source code in which no
MPI messages are posted (denoted “quiescence lines™)
and thus define boundaries between code regions. This
information can also be obtained via prior work [5] or
annotations. We use quiescence lines to partition the
application code into regions that correspond to a single
communication. Within each region we identify the re-
ceive operations and employ define-use analysis [18] to
identify the reads from the receive buffer. We then de-
note all the operations between the receive operations
and these reads as the “deserialize code”. We then ex-
amine the region’s send operations and use define-use
analysis to identify the last writes to their send buffers.
Again, we denote the operations between these writes
and the send as the “serialize code”. The serialize may
write complex data into the send buffer that involves
both copies and computations and the deserialize code
may similarly incorporate the received data into its own
state in complex ways. The only invariant that the sub-
sequent analysis steps both require and verify is that
both code regions access their respective communica-
tion buffers in the same monotonic order.

Finally, the analysis performs a code normalization
step. If there are any conditionals that may lead control
from the serialize code to anywhere other than the
send operations or conditionals that may lead control
from the receive operations to anywhere other than the
deserialize code, these conditionals are expanded to
include both the serialize code and the sends and/or
the receives and the deserialize code. This is done to
simplify control flow to enable the analysis to treat
all the serialize and deserialize code as a simple code
sequence.

4. Runtime Components

This section describes the runtime components that
support our compiler transformations, enabling differ-

ent MPI ranks to directly access each other’s memory.
We also describe how to handle collective communica-
tion that cross node boundaries in a portable way that
avoids additional memory copies.

4.1 Hybrid MPI

Loop fusion requires MPI ranks to share a single ad-
dress space so that they can access one another’s data
structures. However, MPI implementations normally
assign each rank its own process, resulting in disjoint
address spaces. Instead, we can assign each rank to its
own thread and collect all ranks (threads) on a node into
a single process with one address space. We have devel-
oped Hybrid MPI (HMPI), a wrapper library that sits
between the native MPI implementation and the appli-
cation. HMPI performs the proposed mapping of ranks
to threads and uses the shared address space to optimize
point-to-point and collective communication bound for
other ranks in the same node. Transforming a program
to use HMPI can be done by the following simple steps:

1. Rename the original main function to tmain and
remove the call to MPI_Init{ thread}.

2. Create a new main function that calls HMPI_Init,
which will in turn start threads using tmain.

3. Replace all MPI calls with calls to equivalent HMPI
functions.

4. Privatize all global variables.

Transformations (1)-(3) can easily be performed
with a very simple compiler (replacing text statements
only). Step (4), the privatization of global variables,
can be done by annotating them as thread-private (e.g.,
__thread in GCC), which can also be automated with
a compiler, as has been explored in prior work [19].

Figure 9 compares same-node (i.e., shared mem-
ory) message passing performance of MVAPICH2 and
HMPI. A shared address space permits simplified syn-
chronization and requires only a single memory copy
from the send buffer to the receive buffer (MPI nor-
mally requires two copies, which may be pipelined).
1-byte message latency is reduced from 0.50 microsec-
onds for MVAPICH2 to 0.18 microseconds for HMPI
on the LLNL Sierra cluster, which consists of dual-
socket six-core Xeon X5660 CPUs. HMPT’s peak band-
width (63,168 mbps) is much higher than that of MVA-
PICH2 (41,996 mbps) due to one less memory copy.

100

...\
3

Latency (usecs)
" ~,

9 // o

Process-based MP| ——
‘Thr‘eadzbas‘ed HMﬁ" ——

0.1

N
TNV e e NI REN LTSS EFEES
S - - & b
Message Size (bytes)
(a) Latency
100000
4 g /r
J'O‘ /
10000 ’, o / e
— o
(%] o
£ o S
€ /
= R /
B 1000 ., /
5 .”' /
fos] /
RAN
100 ™/
/ Process-based MP| =———
Thread-based HMP| =sssssss:
10 PR sl el MR
TP IR ENESIFSEFSE S
~ N W

Message Size (bytes)
(b) Bandwidth

Figure 9: NetPIPE same-node latency comparison be-
tween MVAPICH2 1.6 and our thread-based Hybrid
MPI library.

4.2 Collective Operations

Collective operations specify collective data move-
ments (or reductions) across a set of processes. They
present additional challenges to our framework. In the
case of point-to-point operations communication is ei-
ther within a node or across node. Loop fusion is used
with any on-node communication where it is applicable
and in all other cases we communicate using the native
MPI implementation. In contrast, a single collective
operation includes both communication within nodes
and across nodes. To support general MPI applications
it is necessary to implement collectives in a partitioned
fashion, utilizing fused communication for the on-node
portions of each collective and MPI operations for the
remaining transfers.

This section explains how this is done for the rep-
resentative case of alltoall operations. Without loss of

generality, we assume that the number of ranks within
all HMPI process is the same (e.g., nodes with iden-
tical multicore processors), with p total ranks ¢ ranks
sharing a memory domain. The HMPI transformation
would run the p ranks with p/t MPI processes and ¢
threads each. Each set of ¢ serialize/deserialize loops
on the p/t different processes is fused. After the fu-
sion, a global alltoall on the p/t MPI processes per-
mutes the data globally, excluding the pieces local to
each node. The additional local copies are excluded by
constructing an MPI datatype that omits the parts of the
buffers that are local in the sending phase and re-orders
the buffers correctly at the receiver for the overall all-
toall communication among p/t processes. We assume
that every process communicates a single element of
a datatype with the same size. Multiple elements can
be handled by representing them as a single contiguous
MPI datatype.

At all senders in block i (0 < i < p/t), we cre-
ate an hindexed type (MPI_Type_create_hindexed)
with blocklength ¢ that spans all ¢ buffers (arrays local
to threads). An hindexed type describes the data layout
as a list of basic data blocks with a relative offset in
bytes. We have to use an hindexed type because each
sent element is in a different (separately allocated) ar-
ray. We then call alltoallv with the correct offsets (to
omit block i on process i as shown in Figure 10). At
each receiver, the incoming data is transposed and writ-
ten to the ¢ receive buffers, which is done by receiving
the data using an hindexed datatype with ¢ blocks of
size t and the correct buffer offsets. The hindexed type
for receive is equivalent to a transposed version of the
send type.

Figure 10 shows the created datatype and a subset
of the communication of alltoall on 8 processes with
two processes sharing a shared memory domain. The
HMPI processes are shown at the top of the figure and
the MPI processes on the bottom. The arrows indicate
parts of the data movement and the crossed out ranks
don’t need to communicate in the MPI process.

Other collective operations can be handled accord-
ingly in the transformation phase. Using datatypes and
the vector variants of the collective operations, we min-
imize the internal data copies for off-node communi-
cation and effectively enable zero-copy mechanisms if
supported by the hardware [9].

012 3|4 5|67
0l 10/zllr10l-10] L 00|
Wi e % 1

2172 2] 7 2|

EZa g @-glz P 33|

at ol larlar | Al M 112l A4

515l ls1 1sr | PB K % %

61 T6l- 1 16] l6r7| 16] 6

ngigfugiglugagR

0 1 2 3

Figure 10: Example of fused Alltoall for p = 8 and
t=2.

5. Experimental Evaluation

To demonstrate the effectiveness of our loop fusion
optimization, we have transformed two applications
(MiniMD and FFT2D) by hand and measured the
change in performance. The first step is to transform
the applications to use our HMPI library using the steps
listed in Section 4.1. Finally we applied loop fusion,
and have shown that in general, it yields significant
speedups.

Experimental results were obtained using the LLNL
Hera and Sierra systems. Hera has 16 2.3 GHz Opteron
8356 cores and 32 GiB of RAM, while Sierra has 12
2.8GHz Xeon X5660 cores and 24 GiB of RAM. MVA-
PICH2 v1.6 was used for all results. All figures show
performance for varying numbers of ranks executed on
a single node.

5.1 miniMD

MiniMD is part of the Mantevo [16] mini-application
suite, which consists of several important application
kernels distilled into smaller benchmark-sized pro-
grams. It is a molecular dynamics simulation that com-
putes atom movement over a 3D space decomposed
into a processor grid. Molecular dynamics is an impor-
tant application area for loop fusion because it simu-
lates long-duration phenomena. Thus, the primary use
for additional cores provided by future HPC systems
will be to reduce the execution time of each time step
for a fixed-size problem. This strong-scaling problem
will be increasingly bound by communication costs.

The primary MiniMD work loop performs the fol-
lowing steps during each iteration:

1. Every 20th iteration, migrate atoms to different
ranks depending on atom locations.

2. Exchange position information of atoms in bound-
ary regions to neighboring ranks.

3. Compute forces applied to both local atoms and
those in boundary regions from neighboring ranks.

4. Exchange force information of atoms in boundary
regions to neighboring ranks.

5. Update local atom velocities and positions.

We have applied the loop fusion transformation to
steps (2) and (4), which send and receive data between
neighboring ranks. For our purposes these exchanges
perform the same operation. Each rank serializes out-
going atom information into a buffer and sends it, re-
peating for each of six neighbors. Incoming atom infor-
mation is received and then deserialized back into the
main atom list. We eliminate the intermediate buffers
and fuse the serialization loops together for neighbors
residing on the same node.

When loop fusion is performed, we have the option
of placing the fused loop at the sender or receiver. Min-
iMD, in particular, uses a secondary array of indices
that identifies which elements out of its main atom list
should be shared with a particular neighbor. In step (2),
this means the serialization loop is a gather operation;
the deserialization loop is a straightforward copy. Step
(4) moves data in the reverse direction, so the serializa-
tion loop is the copy and the deserialization loop is a
scatter operation. We found that the best performance
is attained by placing the fused loop on the rank doing
the scatter or gather operation. Thus, step (2) writes to
the receiver while step (4) reads from the sender.

MiniMD’s communication performance is shown in
Figure 11. It presents the original MPI based code, a
version modified to use HMPI, and the HMPI version
with loop fusion. A fixed problem size of 20x20x20
was used for strong scaling, and we did 2,000 iterations
per run. The HMPI code is comparable to the original
MPI version, frequently performing better. Loop fusion
provides varying but generally significant speedup in
all cases — up to 43% reduction in communication time
on 16 Hera cores and 42% on 12 Sierra cores.

5.2 Fast Fourier Transformation

Fast Fourier Transforms (FFT) are among the most
important operations in use today. Numerous algo-
rithms and parallel applications use FFTs in their core
computations [8, 15]. A one-dimensional FFT trans-

3.5 '
YT
Hybrid MPI e
Loop Fusion
3
25

) N \\H""'.’::if:

Communication Time (seconds)

0.5
2 4 6 8 10 12 14 16
MPI Ranks
(a) Hera System
1 T
[=T
Hybrid MPI v
08 |, Loop Fusion
0.8 "u. _____

07 \ ,,,,,,,,,, = ":%. . . o e,
0.6 * e
05 \

0.4 T~

0.3

Communication Time (seconds)

2 4 6 8 10 12
MPI Ranks

(b) Sierra System

Figure 11: MiniMD communication time; lower is bet-
ter.

forms a one-dimensional array of N complex num-
bers from real space to N complex numbers in fre-
quency space. Such a one-dimensional FFT can be ex-
pressed in terms of multi-dimensional FFTs with addi-
tional application of twiddle factors [21, §12]. A multi-
dimensional FFT with d dimensions can be computed
by applying one-dimensional FFTs in all d dimensions.
Multi-dimensional FFTs are very important in prac-
tice; image analysis often requires two-dimensional
FFTs and transformations in real-space require three-
dimensional FFTs [8, 15]. Since FFTs transfer large
amounts of data, they are communication-bound and
thus are an excellent candidate for the loop fusion op-
timization.

We perform our experiments using a 2-dimensional
FFT kernel. The original 2D FFT code is implemented
using MPI and transforms a N, x NN, domain. The
initial array is stored in x-major order and distributed

in y-dimension such that each process has N, /P y-
pencils. The steps to perform the two-dimensional FFT
are:

1. Perform N, /P 1D FFTs in y-dimension (XN, ele-
ments each).

2. Serialize the array into a buffer for the all-to-all.

. Perform a global all-to-all.

4. Deserialize the array to be contiguous in the x-
dimension (each process now has N, /P z-pencils).

5. Perform N, /P 1D FFTs in the z-dimension (N,
elements each).

6. Serialize the array into a sendbuffer for the all-to-all.

. Perform a global all-to-all.

8. Deserialize the array into its original layout.

[98)

Y

Due to unsatisfactory performance in the MPI’s
datatype implementation, we have implemented our
global alltoall manually instead of using the datatype-
based approach explained in Section 4.2. However, we
replicate what we would expect an optimized MPI im-
plementation (using datatypes) would do:

1. One rank on each node posts receives for one rank
on every remote node in a round-robin fashion start-
ing with the node after it.

2. Each rank on a node copies its send buffer into a
shared send buffer using a stride to place the data in
the correct location for each remote node.

3. One rank posts a send to each remote node in round-
robin fashion using the respective portions of the
shared send buffer.

4. Each rank copies (reads) the data it should receive
from other local ranks, taking advantage of the
shared address space.

5. One rank waits for the remote receive operations to
complete, then signals other local ranks.

6. Each rank copies (reads) data from the shared re-
ceive buffer into its local receive buffer.

In original and HMPI versions of the FFT code pre-
sented here, serialization and deserialization are per-
formed around the alltoall communication. For data
that is destined for a rank on the same node, we can per-
form loop fusion so that each rank writes directly to the
correct location in local ranks’ memory. The fused se-
rialization/deserialization loop replaces step (4) in the
alltoall communication described above.

Two optimizations to the fused loop are possible.
We avoid contention by having each rank write to
other ranks in a round-robin fashion starting from it-
self, rather than having each rank first write to the

MP| =reences
Hybrid MPI e
Loop Fusion

Communication Time (seconds)

MPI Ranks

(a) Hera System

Hybrid MPI e
Loop Fusion

Communication Time (seconds)

2 4 6 8 12
MPI Ranks

(b) Sierra System

Figure 12: FFT2D communication time; lower is better.

first thread on the node. Second, we observe that we
are reading across a two-dimensional space. Improved
cache locality is obtained by ’blocking’ the fused loop
in the same manner as is done for matrix multiplica-
tion. These optimizations can be done by traditional
cache-oriented polyhedral transformations [24].

Figure 12 shows FFT communication performance
for the original MPI-based code, a version modified
to use HMPI, and then with loop fusion optimization.
Strong scaling is shown; a problem size of 8,192% was
used on Hera while 6,144? was used on Sierra. All in-
termediate buffers as well as the global alltoall opera-
tion are eliminated by loop fusion; the transposition of
the data is performed in parallel across all threads at lo-
cal memory copying speeds. The result is that reducing
FFT’s communication time on 16 Hera cores is reduced
by 52% and on 12 Sierra cores by 59%.

6. Conclusions and Future Work

This paper presents a novel compiler-based optimiza-
tion for MPI applications that converts MPI code that
executes on shared-memory hardware to directly trans-
fer application data structures from senders to receivers
without the cost of message serialization, deserializa-
tion and storage. It leverages the fact while the appli-
cation’s data structures may be complex, the code to
serialize and deserialize them typically uses a simple
linear iteration through the communication buffer. This
makes it possible to align the serialization writes in
the sender’s source code with the deserialization reads
in the receiver’s code to directly transfer the sender’s
data structures to the receiver’s regardless of their com-
plexity. We combined our transformation with an im-
plementation of MPI that implements MPI ranks as
threads, enabling different ranks on the same node
to directly access each other’s memory. Our experi-
ments demonstrate that the optimization significantly
improves the communication performance of the min-
iMD molecular dynamics benchmark and a 2D fast
Fourier Transform benchmark, on two different node
architectures. This shows both the utility of our particu-
lar transformation as well as the promise of using com-
pilers to enable applications parallelized using MPI to
take full advantage of multi- and many-core hardware.

Looking forward, this work points the way towards
additional compiler tools for MPI. The greatest power
of our approach is to enable application developers to
use MPI’s explicit parallel programming model to de-
scribe their problem decomposition and data motion,
and rely on the compiler and the MPI runtime to coop-
eratively map this specification to complex hierarchical
nodes and networks.

References

[1] L. Pollock A. Danalis, K. Y. Kim and M. Swany.
Transformations to parallel codes for communication-
computation overlap. In ACM/IEEE Supercomputing
Conference (SC), November 2005.

[2] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel,
B. Drerup, T. Hoefler, J. Joyner, J. Lewis, J. Li, N. Ni,
and R. Rajamony. The PERCS High-Performance
Interconnect. In Proceedings of 18th Symposium
on High-Performance Interconnects (Hot Interconnects
2010). IEEE, Aug. 2010.

[3] Bastoul. Improving data locality in static control pro-
grams. Technical Report PhD Thesis, University Paris
6, Pierre et Marie Curie.

[4] Ron Brightwell. Exploiting direct access shared mem-
ory for mpi on multi-core processors. International
Journal of High Performance Computing Applications,
24:69-77, February 2010.

[5] Greg Bronevetsky. Communication-sensitive static
dataflow for parallel message passing applications. In
International Symposium on Code Generation and Op-
timization (CGO), March 2009.

[6] Darius Buntinas and Guillaume Mercier. Implementa-
tion and shared-memory evaluation of mpich2 over the
nemesis communication subsystem. In Proceedings of
the Euro PVM/MPI Conference. Springer, 2006.

[7] A. Danalis, L. Pollock, M. Swany, and J. Cava-
zos. MPI-aware compiler optimizations for improving
communication-computation overlap. In International
Conference on Supercomputing (ICS), June 2009.

[8] X Gonze, G Rignanese, M Verstraete, J Betiken,
Y Pouillon, R Caracas, F Jollet, M Torrent, G Zerah,
M Mikami, and et al. A brief introduction to the
abinit software package. Zeitschrift fr Kristallographie,
220(5-6-2005):558-562, 2005.

[9] T. Hoefler and S. Gottlieb. Parallel Zero-Copy Algo-
rithms for Fast Fourier Transform and Conjugate Gra-
dient using MPI Datatypes. In Recent Advances in
the Message Passing Interface (EuroMPI’10), volume
LNCS 6305, pages 132—141. Springer, Sep. 2010.

[10] Gerard J. Holzmann. Design and Validation of Com-
puter Protocols. Prentice Hall, 1991.

[11] T.E. Jeremiassen and S.J. Eggers. Static analysis of bar-
rier synchronization in explicitly parallel programs. In
International Conference on Parallel Archtecture and
Compilation Techniques, 1994.

[12] Jian Ke and Evan Speight. Tern: Thread migration in
an mpi runtime environment. Technical Report CSL-
TR-2001-1016, Cornell Computer Systems Laboratory,
November 2001.

[13] Hyun-Wook Jin, Sayantan Sur, Lei Chai, and Dha-
baleswar K. Panda. LiMIC: Support for high-
performance mpi intra-node communication on linux
cluster. In International Conference on Parallel Pro-
cessing (ICPP), 2005.

[14] Amir Kamil and Katherine Yelick. Concurrency analy-
sis for parallel programs with textually aligned barriers.
In Workshop on Languages and Compilers for Parallel
Computing, October 2005.

[15] S. Kumar, C. Huang, G. Zheng, E. Bohm, A. Bhatele,
J. C. Phillips, H. Yu, and L. V. Kalé. Scalable molecular
dynamics with namd on the ibm blue gene/l system.
IBM J. Res. Dev., 52:177-188, January 2008.

[16] Sandia National Lab. Mantevo Benchmark Suite.
https://software.sandia.gov/mantevo.

[17] Teng Ma, George Bosilca, Aurlien Bouteiller, Brice
Goglin, Jeffrey M. Squyres, and Jack J. Dongarra.

Kernel Assisted Collective Intra-node Communication
Among Multicore and Manycore CPUs. Technical re-

port, INRIA, December 2010.

[18] Stephen Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1st edition, 1997.

[19] Stas Negara, Gengbin Zheng, Kuo-Chuan Pan, Natasha
Negara, Ralph E. Johnson, Laxmikant V. Kale, and
Paul M. Ricker. Automatic MPI to AMPI Program
Transformation using Photran. In 3rd Workshop on
Productivity and Performance (PROPER 2010), num-
ber 10-14, Ischia/Naples/Italy, August 2010.

[20] OpenMP Architecture Review Board. OpenMP Appli-
cation Program Interface, Version 3.0. OpenMP Archi-
tecture Review Board, May 2008.

[21] William H. Press, Saul A. Teukolsky, William T. Vet-
terling, and Brian P. Flannery. Numerical recipes in C

(2nd ed.): the art of scientific computing. Cambridge
University Press, 1992.

[22] S. Shao, A. Jones, and R. Melhem. A compiler-based
communication analysis approach for multiprocessor
systems. In International Parallel and Distributed Pro-
cessing Symposium (IPDPS), April 2006.

[23] Michelle Mills Strout, Barbara Kreaseck, and Paul D.
Hovland. Data-flow analysis for MPI programs. In In-
ternational Conference on Parallel Processing (ICPP),
2006.

[24] H. Tang and T. Yang. Induprakas kodukula and keshav
pingali and robert cox and dror maydan. In ACM Inter-
national Conference on Supercomputing (ICS), 1999.

[25] H. Tang and T. Yang. Optimizing threaded MPI exe-
cution on SMP clusters. In ACM International Confer-
ence on Supercomputing (ICS), pages 381 — 392, 2001.

[26] Yuan Zhang, Evelyn Duesterwald, and Guang Gao.
Concurrency analysis for shared memory programs
with textually unaligned barriers. In International
Workshop on Languages and Compilers for Parallel
Computing, October 2007.

